Codon-based detection of positive selection can be biased by heterogeneous distribution of polar amino acids along protein sequences.
نویسندگان
چکیده
The ratio of the number of nonsynonymous substitutions per site (Ka) over the number of synonymous substitutions per site (Ks) has often been used to detect positive selection. Investigators now commonly generate Ka/Ks ratio profiles in a sliding window to look for peaks and valleys in order to identify regions under positive selection. Here we show that the interpretation of peaks in the Ka/Ks profile as evidence for positive selection can be misleading. Genic regions with Ka/Ks > 1 in the MRG gene family, previously claimed to be under positive selection, are associated with a high frequency of polar amino acids with a high mutability. This association between an increased Ka and a high proportion of polar amino acids appears general and not limited to the MRG gene family or the sliding-window approach. For example, the sites detected to be under positive selection in the HIV1 protein-coding genes with a high posterior probability turn out to be mostly occupied by polar amino acids. These findings caution against invoking positive selection from Ka/Ks ratios and highlight the need for considering biochemical properties of the protein domains showing high Ka/Ks ratios. In short, a high Ka/Ks ratio may arise from the intrinsic properties of amino acids instead of from extrinsic positive selection.
منابع مشابه
A generalization of Profile Hidden Markov Model (PHMM) using one-by-one dependency between sequences
The Profile Hidden Markov Model (PHMM) can be poor at capturing dependency between observations because of the statistical assumptions it makes. To overcome this limitation, the dependency between residues in a multiple sequence alignment (MSA) which is the representative of a PHMM can be combined with the PHMM. Based on the fact that sequences appearing in the final MSA are written based on th...
متن کاملCodon-substitution models for heterogeneous selection pressure at amino acid sites.
Comparison of relative fixation rates of synonymous (silent) and nonsynonymous (amino acid-altering) mutations provides a means for understanding the mechanisms of molecular sequence evolution. The nonsynonymous/synonymous rate ratio (omega = d(N)d(S)) is an important indicator of selective pressure at the protein level, with omega = 1 meaning neutral mutations, omega < 1 purifying selection, a...
متن کاملAccuracy and power of bayes prediction of amino acid sites under positive selection.
Bayes prediction quantifies uncertainty by assigning posterior probabilities. It was used to identify amino acids in a protein under recurrent diversifying selection indicated by higher nonsynonymous (d(N)) than synonymous (d(S)) substitution rates or by omega = d(N)/d(S) > 1. Parameters were estimated by maximum likelihood under a codon substitution model that assumed several classes of sites ...
متن کاملThe Impact of Selection at the Amino Acid Level on the Usage of Synonymous Codons
There are two main forces that affect usage of synonymous codons: directional mutational pressure and selection. The effectiveness of protein translation is usually considered as the main selectional factor. However, biased codon usage can also be a byproduct of a general selection at the amino acid level interacting with nucleotide replacements. To evaluate the validity and strength of such an...
متن کاملEvolutionary features of 8K (KDa) silencing suppressor protein of Potato mop-top virus
The cysteine-rich 8K protein of Potato mop-top virus (PMTV) suppresses host RNA silencing. In this study, evolutionary analysisof 8K sequences of PMTV isolates was studied on the basis of nucleotide and amino acid sequences. Twenty-one positively selected sites were identified in 8K codingregions. Recombination events were found in the 8K of PMTV isolates with a rate of 1.8. Totally 30 haplotyp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational systems bioinformatics. Computational Systems Bioinformatics Conference
دوره شماره
صفحات -
تاریخ انتشار 2006